NOTES

AMINOGLYCOSIDE ANTIBIOTICS. IV BU-1709 E₁ AND E₂, NEW AMINOGLYCOSIDE ANTIBIOTICS RELATED TO THE BUTIROSINS

HIROSHI TSUKIURA, KYOICHIRO SAITO, Seikichi Kobaru, Masataka Konishi and Hiroshi Kawaguchi

Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan

(Received for publication April 26, 1973)

In a previous paper¹⁾ we reported that Bacillus circulans, strain No. YQW-B6, produced a complex of aminoglycoside antibiotics designated Bu-1709, of which the two major components, A_1 and A_2 , were identified as butirosins A and B²⁾. Two additional components, E_1 and E_2 , have now been isolated and characterized. They have antibacterial spectra similar to the butirosins but with substantially less intrinsic activity. Bu-1709 E_1 and E_2 contain the paromamine moiety in place of the neamine moiety of the butirosins.

Isolation and Characterization

The components of the Bu-1709 complex were separated by ion-exchange chromatography on Amberlite CG-50 (NH₄⁺). The column was developed with an increasing concentration of aqueous ammonium hydroxide. Components E_1 and E_2 were eluted with N/5 NH₄OH and butirosins with N/2 NH₄OH. The crude mixture of E_1 and E_2 was purified by Dowex 1×2 (OH⁻) chromatography and the components separated with Amberlite CG-50 (NH₄⁺), E_2 being eluted with N/8 NH₄OH followed by E_1 with N/6 NH₄-OH.

Bu-1709 E_1 and E_2 were isolated as white amorphous powders. They are basic watersoluble antibiotics giving positive reactions with ninhydrin, ELSON-MORGAN, EHRLICH and anthrone reagents but negative with TOLLENS and SAKAGUCHI. The molecular formula of $C_{21}H_{40}$ - N_4O_{13} was assigned to both components E_1 and E_2 . The specific rotation determined in water was $+28^{\circ}$ (c 1.47) for E_1 and $+33^{\circ}$ (c 1.30) for E_2 . The presence of two anomeric protons was indicated by NMR signals at 5.35 (s) and 5.85 ppm (d, J=6 Hz) for E_1 , and at δ 5.38 (s) and 5.80 ppm (d, J=6 Hz) for E_2 . Both components showed the same Rf value (0.35) in TLC system S-110* but they were differentiated by system S-115,** the Rf being 0.25 for E_1 and 0.05 for E_2 . Butirosins A and B showed similar behavior with an Rf of 0.21 with system S-110 but were differentiated by system S-115 (A, 0.25; B, 0.05).

The antibacterial activity of Bu-1709 E_1 and E_2 are essentially the same. Table 1 shows the antibacterial spectrum of component E_1 compared with butirosin A. Component E_1 inhibits, as does butirosin, some of the kanamycin-neomycin resistant organisms (Ec-5, Ec-7 and Ec-10 in Table 1) which are known to produce neomycin phosphotransferase I⁸), but the intrinsic activity of E_1 is approximately 1/8 to 1/16 that of butirosin A against most of the test organisms. However, Bu-1709 E_1 is as active as butirosin A against Ec-9 (*Escherichia coli* NR 79/W 677) which is known to produce kanamycin 6'-acetyltransferase⁵).

Structure of Bu-1709 E_1 and E_2

Bu-1709 E_1 was hydrolyzed in methanolic hydrogen chloride (0.5 N) at room temperature for 27 hours. The hydrolyzate was diluted with ether to precipitate a weakly bioactive fragment (I) which was purified by Dowex $1 \times$ 2 (OH⁻). Compound I was analyzed as C₁₆H₈₂- $N_4O_9 \cdot H_2CO_3$, mp 196°C (dec.), $[\alpha]_D^{21.3} + 68^\circ$ (c 0.88, H_2O). The IR spectrum of I showed amide absorption bands at 1640 and 1550 cm^{-1} . The presence of one anomeric proton, $\delta 5.73$ ppm (d, J=6 Hz), was indicated by NMR. Evaporation of the mother liquor gave a methyl glycoside (II) which was identified as methyl D-xyloside by TLC and also by gas chromatography of the trimethylsilyl derivative of II. Likewise, methanolysis of component E_2

^{*} silica gel plate, CHCl₃-MeOH-28 % NH₄OH-H₂O (1:4:2:1).

^{**} alumina plate, upper phase of CHCl₈-MeOH-17 % NH₄OH (2:1:1)

VOL. XXVI NO. 7

THE JOURNAL OF ANTIBIOTICS

Test organism	Code #	Resistant to	MIC (mcg/ml)		MIC
			Bu-1709 E ₁	Butirosin A	ratio
Staphylococcus aureus Smith	Sa-2		6.3	0.4	16
" " R 4	Sa-4	SM	50	6.3	8
" " A 20239	Sa-10	KM, NM	25	3.1	8
Escherichia coli NIHJ	Ec-1		6.3	0.8	8
" " Juhl	Ec-3		12.5	0.8	16
" " ML-1630	Ec-5	KM, NM	25	1.6	16
" " A20365	Ec-7	KM, NM	3.1	0.4	8
" " K 12	Ec-8		12.5	0.8	16
" " NR79/W677	Ec-9	KM	6.3	6.3	1
" " JR35/C600	Ec-10	KM, NM	6.3	0.4	16
" " W677	Ec-52		12.5	0.8	16
" " JR66/W677	Ec-53	KM, NM, GM	>100	50	-
Klebsiella pneumoniae D-11	Kp-1		0.8	0.2	4
" " Type 22, # 3038	Кр-8	KM, NM, GM	>100	50	—
Serratia marcescens A 20019	Sm-1		6.3	3.1	2
Pseudomonas aeruginosa D-15	Pa-1		50	6.3	8
<i>" "</i> A9930	Pa-3		6.3	0.8	8
<i>" "</i> H9	Pa-4	KM, NM	>100	>100	_
" " strain 130	Pa-16	GM	100	12.5	8
Proteus vulgaris A9436	Pv-1		3.1	0.4	8
Proteus mirabilis A9554	Pm-1		6.3	0.8	8
Proteus morganii A9553	Pg-1		6.3	0.8	8
Mycobacterium 607	M6-1		12.5	0.4	32
" phlei	Mp-1		3.1	0.2	16
" ranae	Mr-1		6.3	0.4	16

Table 1. Antibacterial spectra of Bu-1709 E_1 and butirosin A (Agar dilution method on nutrient agar)

* KM: kanamycin, NM: neomycin, GM: gentamicin C, SM: streptomycin.

liberated I and methyl D-riboside (III). Thus the difference between E_1 and E_2 appeared to reside in the pentose moiety as is the case with butirosins A and B.

hydrolysis (0.5 N Alternatively, alkaline NaOH, 120°C, 1 hour) of Bu-1709 E2 and chromatographic fractionation (Amberlite CG-50, NH_4^+ type, developed with water and N/10NH₄OH) yielded an amino acid (IV) and a bioactive product (V). The crude amino acid fraction was purified by Amberlite IR-120 (H⁺) and crystallized from 90 % aqueous ethanol to give colorless needles, $C_4H_9NO_8$, mp 213~215°C, $[\alpha]_{\rm p}^{23}$ – 28° (c 0.45, H₂O), which was identical by IR and NMR spectra to $L(-)-\hat{\tau}$ -amino- α hydroxybutyric acid obtained from butirosins. Compound V was isolated as a white amorphous powder, $C_{17}H_{33}N_{3}O_{11} \cdot H_{2}CO_{3}$, mp 168~170°C, $[\alpha]_{D}^{20.5} + 42^{\circ} (c \ 0.5, H_2O)$. The NMR spectrum

of V indicated two anomeric protons with signals at δ 5.24 (s) and 5.78 (d, J=3.7 Hz) ppm.

Acid methanolysis of compound V (0.5 N HCl, 100°C, 2 hours) yielded a product which was recrystalized from 80 % aqueous ethanol to give colorless needles (VI). Microanalysis of VI was consistent with the formula $C_{12}H_{25}N_3O_7 \cdot 3HCl$, mp>240°C (dec.), $[\alpha]_D^{120.5}+81.3°$ (c 0.8, H_2O). These data along with the IR and NMR spectra established the identity of compound VI with paromamine, a degradation product of paromomycin. The filtrate of the above methanolyzate was neutralized with Amberlite IR-4 B (OH⁻) and evaporated *in vacuo* to leave a neutral solid which was purified and then identified as methyl p-riboside (III).

Thus, compound V is D-ribosyl paromamine and hence Bu-1709 E_2 is D-ribosyl paromamine acylated by the amino acid (IV) at one of the three amino groups.

Mild periodate oxidation of component E_2 (M/100 NaIO₄, 4°C, 3 days in the dark), followed by acid hydrolysis (1 N HCl, 80°C, 30 min.) and subsequent chromatographic fractionation (Amberlite CG-50) and purification (Dowex 1 × 2) yielded a white amorphous solid (VII) which was identical with an authentic sample of 1-N-L(-)- τ -amino- α -hydroxybutyryl-2-deoxystreptamine⁴) obtained from butirosin A by a similar reaction sequence. A quantitative periodate oxidation study on component E_1 , butirosin A and compound V showed consumption of 2.6, 2.6 and 4.1 moles, respectively, of the periodate reagent at 3 hours, and 3.0, 2.8 and 4.4 moles, respectively, at 7 hours, indicating the site of the pentose substitution in compound I to be the C-5 hydroxyl of 2-deoxystreptamine. The structure shown below was therefore established for Bu-1709 E_1 and E_2 .

References

- TSUKIURA, H.; K. FUJISAWA, M. KONISHI, K. SAITO, K. NUMATA, H. ISHIKAWA, T. MIYAKI, K. TOMITA & H. KAWAGUCHI: Aminoglycoside antibiotics. III. Bio-active degradation products from butirosins and semi-synthesis of butirosin analogs. J. Antibiotics 26: 351~357, 1973
- 2) DION, H. W.; P. W. K. WOO, N. E. WILLMER, D. L. KERU, J. ONAGA & S. A. FUSARI: Butirosin, a new aminoglycoside antibiotic complex. Isolation and characterization. Antimicrob. Agents & Chemoth. 2:84~88, 1972
- 3) BRZEZINSKA, M. & J. DAVIES: Aminoglycosidephosphorylating enzymes in neomycin and kanamycin resistant strains of *Escherichia coli* and *Pseudomonas aeruginosa*. Abstracts, 12 th Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 84, 1972
- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K 8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 689~708, 1972
- BENVENISTE, R. & J. DAVIES: Enzymatic acetylation of aminoglycoside antibiotics by *Escherichia coli* carrying an R factor. Biochemistry 10: 1787~1796, 1971